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A new method is presented in this paper for computing the natural frequencies of
a Timoshenko beam with an arbitrary number of transverse open cracks. The essence of this
new method lies in the use of a kind of modi"ed Fourier series (MFS) which is developed
particularly for a Timoshenko beam having an arbitrary number of transverse open cracks.
Unlike the conventional Fourier series, the modi"ed Fourier series can approach a function
with internal geometrical discontinuities. Based on the modi"ed Fourier series, one can treat
the cracked Timoshenko beam in the usual way and thus reduces the problem to a simple
one. By using the present method, only standard linear eigenvalue equations, rather than
non-linear algebraic equations, need to be solved. All the formulae are expressed in matrix
form that renders the task of computer coding quite straightforward.
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1. INTRODUCTION

Cracks found in structural elements have various causes. In metal structures, it could be
fatigue cracks incurred under service conditions as a result of the limited fatigue strength.
Or, it could be cracks due to material or mechanical defects in various kinds of machines. In
concrete structures, it could be the opening of dry joints between precast elements, in
particular in those segmental-constructed box}girder bridges assembled with dry joints that
are favourable in tropical countries.

Knowing the dynamic behaviour of a structure with cracks is of signi"cant importance in
engineering. There are two types of problems related to this topic: the "rst may be called
&&direct problem'' and the second called &&inverse problem''. The &&direct problem'' is to
determine the e!ect of damages on the structural dynamic characteristics, while the &&inverse
problem'' is to detect, locate and quantify the extent of the damages. In the past two
decades, both the direct and the inverse problems have attracted many researchers and
many relevant literatures have been published. Dimarogonas [1] presented the state-of-art
review of various methods in tackling the cracked structure problem.

Although many researchers [2}12] studied the e!ect of damages on the structural
dynamic characteristics, their studies were often limited to Euler beam. In fact, when the
number and/or depths of cracks increase, behaviour of the cracked sub-segments is more
like a &thick beam', and therefore adopting the Timoshenko-beam theory is more reasonable
than the Euler beam. Recently, Shifrin and Ruotolo [13] developed a method that can be
used to tackle a beam with multiple cracks. However, their studies were limited to Euler
beams.

Gudmunson [14] employed a theory based on the "rst order perturbation to study the
e!ect of cracks, notches and other geometrical discontinuities on the eigenfrequencies of
0022-460X/01/370297#21 $35.00/0 ( 2001 Academic Press
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slender structures. Via the Euler}Bernoulli beam theory, Christides and Barr [15]
established a set of di!erential equations for one-dimensional cracked beams.

On the whole, the prevailing methods can be classi"ed into two main categories. In the
"rst category, the beam is modelled as an assembly of a number of sub-beams connected by
massless rotational springs. Subsequently, the vibrational di!erential equations are
established and then solved piecewisely [2}9, 13]. The second category falls within the
regime of the "nite element method [10}12, 14}18]. The former is a kind of continuous
method while the latter is a kind of discrete method. Since the "nite element solution is
obtained through discretization, it is not unexpected that the continuous method will yield
more accurate solutions. On the other hand, the continuous method has some limits and
drawbacks. Firstly, its applications are usually limited to uniform beams. Secondly, the
formulae are more complex and not uni"ed. Thirdly, to obtain the natural frequencies, it
usually requires a search of the roots of a non-linear algebraic equation (i.e., the determinant
of an eigenmatrix). The main objectives of developing the present method are to alleviate
these drawbacks but to retain the accuracy.

Conceptually, the simulation of a cracked beam is analogous to that of a beam with
stepped changes of cross-sections and/or with intermediate point supports. Recently, the
modi"ed Fourier series (MFS) and the modi"ed beam vibration functions (MBVF) were
developed and have been successfully used in solving the vibrational problems of structures
with stepped cross-sections and/or intermediate point supports [19}24].

In this paper, a new method is developed for computing the natural frequencies of
a Timoshenko beam with an arbitrary number of transverse open cracks. The essence of this
new method lies in the use of a kind of modi"ed Fourier series that is developed specially for
the analysis of a beam with arbitrary number of transverse open cracks. Unlike the
conventional Fourier series, the modi"ed series is able to approach a function with internal
geometrical discontinuities e!ectively. Based on the present modi"ed Fourier series, one can
treat the cracked beam in the usual way (i.e., once the MFS is employed, the computational
procedures will be the same as those for an uncracked beam) and thus reduces the problem
to a simple one. As can be seen from the sti!ness matrix in the frequency equation (63), the
extra e!ort needed is just to add the K

4
matrix to the sti!ness matrix of the beam. In the

present method, only standard linear eigenvalue equations, rather than non-linear algebraic
equations, need to be solved. Since this new method falls within the frame of continuous
methods, its capability of achieving higher accuracy is expected. Moreover, all the formulae
are expressed in a uni"ed way and in matrix form, which renders the computer coding quite
straightforward. To demonstrate the e!ectiveness and accurateness of the present method,
several numerical examples are shown.

2. THEORY AND FORMULATION

2.1. MODIFIED FOURIER SERIES >
m
(y)

Figure 1 shows a beam having (Q!1) number of transverse open cracks located at
y"y

2
, y

3
,2, y

Q
and having N

0
point-spring supports located at y"s

1
, s

2
,2, s

N0
respectively. The beam can have non-uniform cross-sectional areas A(y) and various second
moment of area I(y) along the longitudinal direction y. The depths of the cracks are Ma

i
,

i"1, 2,2 , Q!1N, a
i
*0, and the translational and rotational sti!ness of the point

springs are Mk
i
, s

i
, i"1, 2,2 , N

0
N. The point springs are introduced here for the purpose of

modelling the boundary supports and the intermediate point supports, if any.
The transverse de#ection and the rotation of cross-section of the Timoshenko beam are

denoted by w(y, t) and t(y, t), respectively, where y stands for the location and t stands for



Figure 1. An axially compressed Timoshenko beam having (Q!1) number of cracks located at y"y
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the time. Considering the continuity of function w (y, t) and discontinuity of function t (y, t),
we can express them as follows:

w(y, t)"
R
+

m/1

w
m
(t) >M

m
(y)"H1 (y)q

1
(t) (R"2r#1), (1)

t(y, t)"
R
+

m/1

t
m
(t) >

m
(y)"H(y)q

2
(t) (R"2r#1), (2)

where

H1 (y)"[>M
1
(y) >M

2
(y)2>M

R
(y)], (3)

H(y)"[>
1
(y) >

2
(y)2>

R
(y)], (4)

q
1
(t)"[w

1
(t) w

2
(t)2w

R
(t)]T, (5)

q
2
(t)"[t

1
(t) t

2
(t)2t

R
(t)]T. (6)

In the above equations, w
m
(t) and t

m
(t) are the generalized co-ordinates of deformation for

the beam; >M
m
(y) is the Fourier series base function [25] and >

m
(y) is the so-called modi"ed

Fourier function which is speci"cally constructed such that it can approach a function with
internal discontinuities.

In the present formulation, >
m
(y) is expressed as the sum of Fourier series base function

>1
m
(y) and an augmenting piecewise constant function >3

m
(y) as follows:

>
m
(y)">M

m
(y)#>3

m
(y), (7)
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>1
m
(y)"G

1 m"1,

cos(ku
0
y), m"2k; k"1, 2,2 , r,

sin(ku
0
y), m"2k#1; k"1, 2,2 , r,

(8)

>I
m
(y)"

Q
+
j/1

f
j
l
j
(y), (9)

where u
0
"n/l is the basic frequency and l

j
(y) are the piecewise constant interpolation base

functions

l
j
(y)"G

1,

0,

y3 (y
j
, y

j`1
)

others
( j"1, 2,2, Q). (10)

By adding the piecewise constant functions M>I
m
(y), m"1, 2,2, RN (see Figure 2) onto the

basic Fourier series M>M
m
(y), m"1, 2,2 , RN, we can force the whole function M>

m
(y),

m"1, 2,2 , RN to satisfy the geometrical discontinuity conditions at the locations of
cracks. Thus in the following analysis, we can treat the cracked beam in the usual way and
need not further bother about the internal geometrical discontinuities.
Denoting

H3 (y)"[>I
1
(y) >I

2
(y)2>I

R
(y)], (11)

we have

H(y)"H1 (y)#H3 (y). (12)

The geometrical discontinuity condition at the cracks' location y"y
j
( j"2, 3,2 , Q) is

[18]

>
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( y

j
#0)!>
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j
!0)"c

j~1
>@

m
(yPy

j
), (13)

where c
j~1

is the #exibility coe$cient of the crack having a depth of a
j~1

. For one-sided
cracks, it can be expressed as

c
j~1

"5)346h(y
j
)g (m

j~1
) ( j"2, 3,,2 , Q), (14)
Figure 2. Augmenting piecewise constant function >I
m
(y).
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where h(y
j
) is the depth of the cross-section of the beam at y"y

j
and

m
j~1

"a
j~1

/h (y
j
), (15)

g(m)"1)8624m2!3)95m3#16)375m4!37)226m5#76)81m6!126)9m7

#172m8!143)97m9#66)56m10. (16)

Substituting equation (7) into equation (13) and considering that >1
m
(y) is a smooth

harmonic function, we have

>I
m
(y

j
#0)!>3

m
(y

j
!0)"c

j~1
>M @

m
(y

j
). (17)

Equation (17) can also be expressed as

H3 (y
j
#0)!H3 (y

j
!0)"c

j~1
H1 @(y

j
) . (18)

Substituting equations (9) and (10) into equation (17), we have

!f
j~1

#f
j
"c

j~1
>M @

m
(y

j
) ( j"2, 3,2 , Q). (19)

Setting

f
1
"0, (20)

we totally have Q number of equations which are su$cient to determine the Q number of
unknown coe$cients f

j
. Equations (19) and (20) can be expressed in matrix form as follows:

Af"b, (21)

where

A"

1 0 0 0 0 2 0 0
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0 0 0 } 0 2 0 0

0 0 0 0 } 2 0 F

F F F F F } 0 0

0 0 0 0 0 !1 1 0

0 0 0 0 0 2 !1 1

, (22)
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1

f
2

f
3

2 2 f
Q~2

f
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f
Q
]T, (23)
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1
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2
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3
) 2 2 2 c

Q~2
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m
(y
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m
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Q
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By solving equation (21), we can determine the coe$cients f
j

( j"1, 2,2 , Q) and thus
determine the augmenting piecewise constant functions >3

m
(y) and the modi"ed Fourier

series >
m
(y).
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2.2. ENERGY ANALYSIS

2.2.1. Potential energy

The potential energy of a cracked Timoshenko beam under axial load can be expressed as
the summation of the following "ve parts:

;";
1
#;

2
#;

3
#;

4
#;

5
, (25)

in which;
1

and;
2

are the potential energy stored in the cracked beam due to bending and
shearing deformation of the beam itself; ;

3
is the potential energy stored in the point

springs which are used to model the boundary supports and also the intermediate supports
(if any);;

4
is the potential energy stored in the massless rotational springs which are used to

model the existence of cracks; ;
5

is the potential energy of the external variable axial load
jN(y).

Potential energy ;
1
:

;
1
"

Q
+
i/1

1

2 P
yi`1

yi

EI(y)t2
,y
(y, t) dy. (26)

Substituting equation (2) into equation (26), we have

;
1
"1

2
qT
2
K

1
q
2
, (27)

where K
1

represents the sti!ness matrix of the cracked beam corresponding to the potential
energy ;

1
such that

K
1
"

Q
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P
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Substituting equations (1) and (2) into equation (29), we have
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K
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i
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i
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Substituting equations (1) and (2) into equation (34), we have
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where

K
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"
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k
i
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i
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i
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K
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i
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Potential energy ;
4
:

;
4
"
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)
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j
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Substituting equation (2) into equation (38), we have

;
4
"1

2
qT
2
K

4
q
2
, (39)

where K
4

represents the sti!ness matrix of the cracked beam corresponding to the potential
energy ;

4
such that

K
4
"
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+
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l

0

N(y)w2
,y
(y, t) dy. (41)

Substituting equation (1) into equation (41), we have

;
5
"!1

2
qT
1
(jK

G
)q

1
, (42)

where K
G

represents the sti!ness matrix of the cracked beam corresponding to the potential
energy ;

5
such that,

K
G
"P

l

0

N(y)H1 T
,y
H1

,y
dy. (43)

Finally, substituting equations (27), (30), (35) and (39) into equation (25), we obtain the total
potential energy of the cracked-beam system
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q
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2.2.2. Kinetic energy

The kinetic energy of the Timoshenko beam can be expressed as the summation of the
two parts, ¹

1
and ¹

2
, such that

¹"¹
1
#¹

2
, (45)

in which ¹
1

and ¹
2

are the kinetic energy stored in the Timoshenko beam due to
translational and rotational deformation respectively.

The translational kinetic energy ¹
1

of the Timoshenko beam can be expressed as

¹
1
"

1

2 P
l

0

oA(y)w2
,t
(y, t) dy. (46)

Substituting equation (1) into equation (46), we have

¹
1
"1

2
q5 T
1
M

1
q5
1
, (47)

where

M
1
"P

l

0

oA(y)H1 T (y)H1 (y)dy. (48)

The rotational kinetic energy ¹
2

of the Timoshenko beam can be expressed as

¹
2
"

1

2 P
l

0

J(y)t2
,t
(y, t) dy. (49)

Substituting equation (2) into equation (49), we have

¹
2
"1

2
q5 T
2
M

2
q5
2
, (50)

where

M
2
"P

l

0

J(y)HT(y)H(y) dy. (51)

Finally, substituting equations (47) and (50) into equation (45), we obtain the total kinetic
energy of the Timoshenko beam,

¹"1
2

q5 T
1
M

1
q5
1
#1

2
q5 T
2
M

2
q5
2
. (52)

2.3. EULER}LAGRANGIAN EQUATIONS

The Euler}Lagrangian equations of the cracked Timoshenko beam are

d

dt A
L¸
Lq5

1
B!

L¸
Lq

1

"0,
d

dt A
L¸
Lq5

2
B!

L¸
Lq

2

"0, (53, 54)
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where ¸ is the Lagrangian function such that

¸"¹!;. (55)

Substituting equations (52) and (44) into equation (55), and then the results into equations
(53) and (54), we have

M
1
qK
1
#(K

21
#K

31
!jK

G
)q

1
!K

22
q
2
"0, (56)

M
2
qK
2
#(K

1
#K

23
#K

32
#K

4
)q

2
!KT

22
q
1
"0. (57)

Equations (56) and (57) can be written into one matrix equation

MqK#Kq"0, (58)

where

M"C
M

1
0

0

M
2
D , (59)

K"C
K

21
#K

31
!jK

G
!KT

22

!K
22

K
1
#K

23
#K

32
#K

4
D , (60)

q"C
q
1

q
2
D . (61)

2.4. FREQUENCY EQUATION

For synchronous vibration, we have

q(t)"q cos (ut#/). (62)

Substituting equation (62) into equation (58), we can obtain the frequency equation

Kq"u2Mq. (63)

Equation (63) is a standard linear eigenvalue equation that can be solved by standard
programs. It is worth noting that the matrix K

4
represents the additional sti!ness

contributed from the massless rotational springs, which are used to model the cracks in the
beam. However, contrary to the conventional belief that higher sti!ness will lead to increase
of vibration frequencies, the presence of crack(s) will result in the overall reduction of
vibration frequencies. This physical phenomenon is taken into account in the mathematical
representation in the present method by using the modi"ed Fourier series, which is
discontinuous at the crack locations.

3. NUMERICAL EXAMPLES

Several numerical examples are shown in this section. It is worth noting that, for
modelling the boundary conditions, we use very big (1010}1014) translational and rotational
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sti!ness of the springs (i.e., i
i
and s

i
) in the numerical computations. In the following

examples, the order of the highest harmonic r adopted is in the range of 5}12 to achieve
converged results.

3.1. EXAMPLE 1: A CANTILEVERED THICK AND THIN BEAM WITH AND WITHOUT CRACKS

To validate the present theory and the computer coding, "rstly the natural frequencies of
a thick cantilevered beam and a thin cantilevered beam without cracks were computed and
the results were compared with those in references [26, 27]. The cantilevered beam has the
geometrical properties: length l; square cross-section (i.e., width b equals height h). Same
parameters as those in references [26, 27] were used: the depth-to-span ratio equals 0)1 for
a thick beam and 0)001 for a thin beam, respectively; the cross-section coe$cient k@ equals

0)822. The dimensionless frequencies X
j
"((l2/h) J2(1#k)o/E)u

j
are presented. Two
TABLE 3

Natural frequencies of a cracked ¹imoshenko beam

Cracked beam Uncracked beam
Natural

frequency Present Kisa et al. [28] Error (%) Kisa et al. [28]

u
1

1024)963 1020)137 0)5 1037)019
u

2
6441)290 6457)396 0)2 6458)344

u
3

17737)870 17872)91 0)8 17960)564

TABLE 2

<alues of X for thick and thin CC beams

h/¸"0)1 h/¸"0)001

X
1

X
2

X
3

X
1

X
2

X
3

Present 9)7545 25)9810 45)1226 10)4141 28)7067 56)2758
Dawe and Wang [26] 9)7545 24)981 45)123 10)414 28)707 56)276
Wang [27] 9)7546 24)987 45)201 10)414 28)708 56)304

TABLE 1

<alues of X for thick and thin CF beams

h/¸"0)1 h/¸"0)001

X
1

X
2

X
3

X
1

X
2

X
3

Present 1)6236 9)7266 25)5684 1)6366 10)2564 28)7181
Dawe and Wang [26] 1)6236 9)7266 25)568 1)6366 10)256 28)718
Wang [27] 1)6236 9)7268 25)578 1)6366 10)256 28)720



Figure 3. E!ect of a single crack at clamped end on natural frequencies of a beam:**, "rst freq. (Timoshenko
beam, present); s, "rst freq. (Euler beam [13]); - - - -, second freq. (Timoshenko beam, present); n, second freq.
(Euler beam [13]).

Figure 4. A cantilevered beam with two cracks while the second crack's location is variable.
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cases are considered. One is clamped}free (CF) and another is clamped}clamped (CC). The
"rst three frequencies obtained by the present method are compared with those in references
[26, 27] as shown in Tables 1 and 2. Perfect agreement is observed.

Subsequently, the results for a cracked Timoshenko beam were computed and compared
with those in reference [28]. Again, same parameters as those in reference [28] were used:
l"0)2 m, b"0)025 m, h"0)0078 m, E"216 GPa, k"0)28 and o"7850 kg/m3. The
crack is located at m"0)2l and the crack depth is a"0)2 h. The "rst three natural
frequencies obtained from the present method are compared with those in reference [28] as
shown in Table 3. Again, excellent agreement is observed.

It can be seen from Table 3 that higher order modes exhibit less reduction in frequency
than lower order modes do.



Figure 5. E!ect of locations of a second crack (a
2
"2 mm) on natural frequencies of a beam: **, "rst freq.

(Timoshenko beam, present); s, "rst freq. (Euler beam [13]); - - - -, second freq. (Timoshenko beam, present); ],
second freq. (Euler beam [13]).
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3.2. EXAMPLE 2: A CANTILEVERED BEAM WITH A CRACK LOCATED AT THE CLAMPED END [13]

Consider a cantilevered beam with a crack located at the clamped end. The results
obtained by the present method and the results from reference [13] are shown in Figure 3.
In Figure 3, the vertical axis stands for the frequency ratio of the natural frequencies of the
cracked beam to the natural frequencies of the same but uncracked beam, i.e., the frequency
reduction. The horizontal axis stands for the normalized sti!ness (l/c

1
) of the arti"cial

rotational spring introduced at the crack. It can be seen that the frequency reduction of
a Timoshenko beam is less than that of a Euler beam [13]. This is not surprising because
Timoshenko beam is less sti! than a Euler beam. Therefore, Timoshenko beam is less
sensitive to the cracks. It is worth nothing that the di!erences in frequency reductions
between the Euler- and the Timoshenko-beam model diminished when the depths of cracks
are very small (i.e., when l/c

1
is large).

3.3. EXAMPLE 3: A CANTILEVERED BEAM WITH TWO CRACKS [13]

Figure 4 shows a cantilevered beam with two cracks. For the purpose of comparing the
results from reference [13], the same geometrical properties of the beam are used, i.e., length
l"0)8m; rectangular cross-section having width b"0)02m and height h"0)02m. The "rst
crack is at a "xed location y

c1
"0)12m and has a depth a

1
"2 mm. The second crack's

location varies from the left end to the right end of the beam and its depth also varies (a
2
"2

or 4 or 6 mm). The results obtained by the present method and those from reference [13] are
shown in Figures 5}7. It can be seen from Figures 5}7 that the thicker the crack goes, the
bigger is the di!erence in frequency reduction between the Timoshenko- and the Euler-beam
model. In fact, when more cracks or deeper cracks occur in a beam, the beam tends to behave
more like &&thick beams'' because the e!ect of shear deformation becomes more signi"cant.

3.4. EXAMPLE 4: A THICK CANTILEVERED BEAM WITH TWO CRACKS

In order to illustrate the e!ect of shear deformation, which is taken into account in the
Timoshenko beam, a thick cantilevered beam with two cracks is studied (as shown in



Figure 6. E!ect of locations of a second crack (a
2
"4 mm) on natural frequencies of a beam: **, "rst freq.

(Timoshenko beam, present); s, "rst freq. (Euler beam [13]); - - - -, second freq. (Timoshenko beam, present); ],
second freq. (Euler beam [13]).

Figure 7. E!ect of locations of a second crack (a
2
"6 mm) on natural frequencies of a beam: **, "rst freq.

(Timoshenko beam, present); s, "rst freq. (Euler beam [13]); - - - -, second freq. (Timoshenko beam, present); ],
second freq. (Euler beam [13]).
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Figure 4). The beam has the geometrical properties: length l"0)8 m, rectangular cross-
section having width b"0)1m and height h"0)2m. The "rst crack is at a "xed location
y
c1
"0)12m and has a depth a

1
"30 mm. The results are shown in Figures 8}10. The same

trend can be seen from Figures 8}10 that the deeper the crack goes, the bigger is the
di!erence in frequency reduction between the Timoshenko- and the Euler-beam model.
Besides, the e!ect of shear deformation and rotation become very signi"cant, in particular
for higher order frequencies.

3.5. EXAMPLE 5: A TWO-SPAN CONTINUOUS GIRDER WITH TWO &&CRACKS''

Figure 11 shows a two-span continuous girder built by segmental construction method.
The total length (1) of the bridge is 2]33"66 mm, composed of 2]10"20 segments. The



Figure 8. (a) E!ect of locations of a second crack (a
2
"0)04 m) on the "rst natural frequency of a thick beam:

**, Timoshenko beam (present); - - - -, Euler beam [29]. (b) E!ect of locations of a second crack (a
2
"0)04 m) on

the second natural frequency of a thick beam: **, Timoshenko beam (present); - - - - , Euler beam [29].
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Figure 9. (a) E!ect of locations of a second crack (a

2
"0)08 m) on the "rst natural frequency of a thick beam:

**, Timoshenko beam (present); - - - -, Euler beam [29]. (b) E!ect of locations of a second crack (a
2
"0)08 m) on

the second natural frequency of a thick beam:**, Timoshenko beam (present); - - - - , Euler beam [29]. (c) E!ect
of locations of a second crack (a

2
"0)08 m) on the third natural frequency of a thick beam: **, Timoshenko

beam (present); - - - - , Euler beam.

20 segments are held together via longitudinal pre-stressing force. Joints between segments
are dry joints (i.e., no cement mortar). It has a constant cross-sectional area A"1)9892 m2,
second moment of area I"0)8804 m4, and depth h"1)9m. The pre-stressing force is an
axial force F"10 MN without eccentricity from the centroidal axis. Young's modulus is
taken as 20 GPa and the Poisson ratio is 0)2. The "rst crack's location varies from the
leftmost segment joint to the rightmost segment joint in the left span and the depth varies
(a

1
"0)25, 0)5 and 0)75m). The second crack is sited at a "xed location in the mid-span of
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Figure 11. A two-span segmental box}girder}bridge.

Figure 12. E!ect of locations of a &&crack'' (a
1
"0)25 m) on natural frequencies of a two-span continuous

girder: **, "rst freq.; - - - -, second freq.; } -- }, third freq.
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Figure 10. (a) E!ect of locations of a second crack (a
2
"0)12 m) on the "rst natural frequency of a thick beam:

**, Timoshenko beam (present); - - - -, Euler beam [29]. (b) E!ect of locations of a second crack (a
2
"0)12 m) on

the second natural frequency of a thick beam:**, Timoshenko beam (present); - - - - , Euler beam [29]. (c) E!ect
of locations of a second crack (a

2
"0)12 m) on the third natural frequency of a thick beam: **, Timoshenko

beam (present); - - - - , Euler beam [29].

the right span (y
c2
"49)5m) and has a "xed depth a

2
"0)25m. The results are shown in

Figures 12}14, which show the e!ect of the unexpected opening of dry joints on the natural
frequencies of the segmental girder. Figures 12}14 suggest that by detecting the change of
the natural frequencies of the girder, one can monitor the opening of the dry joints.

4. CONCLUSIONS

A new modi"ed Fourier series (MFS) was presented. It was developed to tackle the
problem in beams with arbitrary number of cracks. The modi"ed Fourier series can



Figure 13. E!ect of locations of a &&crack'' (a
1
"0)5 m) on natural frequencies of a two-span continuous

girder: **, "rst freq.; - - - -, second freq.; } -- }, third freq.

Figure 14. E!ect of locations of a &&crack'' (a
1
"0)75 m) on natural frequencies of a two-span continuous girder:

**, "rst freq.; - - - - , second freq.; } -- }, third freq.
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approach a function with internal geometrical discontinuities e!ectively. Via the
Euler}Lagrangian equation, we can treat the vibrational analysis of a cracked beam in the
usual way. It thus renders the problem-solving procedures simple. In the formulation, an
open crack is assumed as having sti!ness, which is simply added to the sti!ness matrix of the
beam. The beam can be of non-uniform cross-section and the number of cracks can be
arbitrary. In solving the natural frequencies of a cracked beam, only a standard linear
eigenvalue equation needs to be solved. All the formulae are expressed in matrix form and
therefore computer coding is straightforward. Numerical examples showed that the present
method is versatile and e!ective.
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APPENDIX A: NOMENCLATURE

E Young's elastic modulus
k the Poisson ratio
o density of mass
G shear modulus
k@ cross-section coe$cient
j axial-force coe$cient
N(y) axial-force function
>1

m
(y) basic Fourier series

>I
m
(y) augmenting piecewise constant function

>
m
(y) modi"ed Fourier series

Q!1 number of transverse open cracks
My

i
, i"1, 2,2 , Q#1N y-ordinates for endpoint at LHS, location of cracks and endpoint at RHS

of beam
Ms

i
, i"1, 2,2, N

0
N y-ordinates of point-spring supports

A(y) cross-sectional area of beam
I(y) second moment of area of cross-section
w(y, t) transverse de#ection of beam
t(y, t) rotation of cross-section of beam
Mw

m
(t), t

m
(t), m"1,2,RN generalized co-ordinates for deformation of beam

q
1
(t), q

2
(t) vectors of w

m
and t

m
respectively

r the highest order of the basic Fourier series
R number of terms of the modi"ed Fourier series
u

0
basic frequency of the basic Fourier series

Ml
j
(y), j"1, 2,2, QN piecewise constant interpolation based function

M f
j
, j"1, 2,2 , QN values of the augmenting piecewise constant functions

Ma
j
, j"1, 2,2 , Q!1N depths of cracks

Mc
j
, j"1, 2,2 , Q!1N #exibility coe$cients of cracks

Mk
i
, s

i
, i"1,2 , N

0
N translational and rotational sti!ness of the point spring supports

A coe$cient matrix for determining the augmenting function
f vector of the values of the augmenting piecewise constant function
b RHS vector for determining the augmenting function
; total potential energy of a cracked beam
;
1

potential energy of the beam due to bending deformation
;

2
potential energy of the beam due to shearing deformation

;
3

potential energy stored in support springs
;

4
potential energy stored in the equivalent rotational springs used to model
the existence of cracks

;
5

potential energy of the axial compression force
H1 vector of the basic Fourier series function
H3 vector of the augmenting function
H vector of the modi"ed Fourier series function
K total sti!ness matrix for the cracked beam
K

1
sti!ness matrix corresponding to potential energy ;

1K
21

, K
22

, K
23

sti!ness matrix corresponding to potential energy ;
2K

31
, K

32
sti!ness matrix corresponding to potential energy ;

3K
4

sti!ness matrix corresponding to potential energy ;
4K

G
sti!ness matrix corresponding to potential energy ;

5
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¹ total kinetic energy of the beam
¹
1

kinetic energy of the beam due to transverse de#ection movement
¹
2

kinetic energy of the beam due to rotation movement
M total mass matrix of the beam
M

1
mass matrix of the beam corresponding to ¹

1M
2

mass matrix of the beam corresponding to ¹
2

¸ Lagrangian function
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